Morse decomposition for random dynamical systems


主講人:柳振鑫 大連理工大學教授 博士生導師





內容介紹:The Morse decomposition theorem states that a compact invariant set of a given  flow can be decomposed into finite invariant compact subsets and connecting  orbits between them, which is helpful for us to study the inner structure of  compact invariant sets. When dynamical systems are randomly perturbed, by real  or white noise, we show that for finite and infinite dimensional random  dynamical systems, we have the random Morse decomposition; we also construct  Lyapunov function for the decomposition. For deterministic systems, we introduce  the concept of natural order to study the relative stability of Morse sets by  the stochastic perturbation method. We also investigate the stochastic stability  of Morse (invariant) sets under general white noise perturbations when the  intensity of noise converges to zero.

极速快乐十分所有平台 捕鱼怎么兑礼品赚钱 做皮蛋买赚钱吗 云南11选5 漂流瓶发广告能赚钱 森林龙江麻将外挂 雷速体育电脑版有吗 东北麻将打1元怎样算账 ag捕鱼王3d技巧视频 2011中超足球直播 李逵劈鱼技巧 内蒙古麻将老友玩法 彩票宝首页 小鱼赚钱公众号是多少 誉彩彩票苹果 2019户外可以赚钱的app c9999彩票游戏